3.418 \(\int \frac{\sqrt{\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=101 \[ \frac{2 A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{a d}-\frac{2 (A b-a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a d (a+b)} \]

[Out]

(2*A*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - (2*(A*b - a*B)*Sqrt[Cos[c + d*x]
]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*(a + b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.19823, antiderivative size = 101, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.152, Rules used = {4038, 3771, 2641, 3849, 2805} \[ \frac{2 A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{2 (A b-a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a d (a+b)} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

(2*A*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - (2*(A*b - a*B)*Sqrt[Cos[c + d*x]
]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*(a + b)*d)

Rule 4038

Int[((csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)), x_Symbol] :> Dist[A/a, Int[(d*Csc[e + f*x])^n, x], x] - Dist[(A*b - a*B)/(a*d), Int[(d*Csc[e + f*x
])^(n + 1)/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2
- b^2, 0]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)} (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx &=\frac{A \int \sqrt{\sec (c+d x)} \, dx}{a}-\frac{(A b-a B) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{a}\\ &=\frac{\left (A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{a}-\frac{\left ((A b-a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a}\\ &=\frac{2 A \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a d}-\frac{2 (A b-a B) \sqrt{\cos (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a (a+b) d}\\ \end{align*}

Mathematica [A]  time = 0.581318, size = 78, normalized size = 0.77 \[ \frac{2 \sqrt{-\tan ^2(c+d x)} \cot (c+d x) \left (a B \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right ),-1\right )+(a B-A b) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )\right )}{a b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

(2*Cot[c + d*x]*(a*B*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1] + (-(A*b) + a*B)*EllipticPi[-(b/a), -ArcSin[Sqr
t[Sec[c + d*x]]], -1])*Sqrt[-Tan[c + d*x]^2])/(a*b*d)

________________________________________________________________________________________

Maple [A]  time = 2.02, size = 217, normalized size = 2.2 \begin{align*} -2\,{\frac{\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}}{a \left ( a-b \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d} \left ( A{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) a-A{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) b+A{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2\,{\frac{a}{a-b}},\sqrt{2} \right ) b-B{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2\,{\frac{a}{a-b}},\sqrt{2} \right ) a \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a-A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b+A*EllipticPi(
cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*b-B*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*a)/a/(a-b)/(-2*sin(
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\sec \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )}\right ) \sqrt{\sec{\left (c + d x \right )}}}{a + b \sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)

[Out]

Integral((A + B*sec(c + d*x))*sqrt(sec(c + d*x))/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\sec \left (d x + c\right )}}{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*sec(d*x + c) + a), x)